Chirped Pulse Amplification Ultrafast Spectroscopy

Café Scientifique Talk Nov 15, 2018 Discussion of the 2018 Nobel Prize in Physics for Chirped Pulse Amplications

John Prineas and Xinxin Li

Dept of Physics and AstronomyEngineering, Iowa CREATES, The University of Iowa

Nobel prize in physics 2018 was awarded "for groundbreaking inventions in the field of laser physics" to:

Arthur Ashkin (prize share : 1/2)

"optical tweezers and their application to biological systems"

Donna Strickland (prize share : 1/4)

"for their method of generating high-intensity, ultrashort optical pulses"

Figures copyright © Nobel Media AB 2018 https://www.nobelprize.org/prizes/physics/2018/summary/ **LASER** : Light Amplification by Stimulated Emission Radiation

□ Theoretical foundation established by Albert Einstein in 1917

Albert Einstein (copyright © Nobel Media AB 2018)

□ First working laser was invented by Theodore Harold Maiman in **1960**.^[1]

Theodore Harold Maiman (copyright©2014 National Academy of Sciences)

Figure 2. The first ruby laser in 1960 (copyright ©2018 American Institute of Physics)

[1] T. H. Maiman, "Stimulated Optical Radiation in Ruby", Nature (1960), vol 187, pages 493–494

Higher peak power and intensity

Figure 3. Conversion efficiency of second harmonic generation in BiBO crystal with respect to pump pulse peak power. ^[2]

Optical nonlinear processes in materials

Figure 4. Laser peak output irradiance in decades

Q-switching and mode-locking through shortening pulse duration has increased peak power up to GW range.

[2]Tetsuo Harimoto, et al, "Spectral properties of second-harmonic generation at 800 nm in a BiB_3O_6 crystal", Optics Express (2004), Vol. 12, Issue 5, pp. 811-816

Q-switching versus mode locking

https://www.americanscientist.org/article/high-power-lasers

- Power station: 1-2 GW
- Power consumed in U.S.: 1 TW
- Most powerful amplified lasers: PW
- Output of our tabletop Ti:Sapphire oscillator:
 - 1 W average power
 - (12x10⁻⁹ s / 30x10⁻¹⁵ s) x 1.5 W
 ~ 1 MW peak power
- Output of our tabletop amplified Ti:Sapphire:
 - 3 W average power
 - (10⁻³ s / 10⁻¹³s) x 3 = 30 GW peak power
- Focus to 20 um:
 - Ti:Saph oscillator: 10¹¹ W/cm2
 - Ti:Saph amplifier: 10¹⁶ W/cm2

Figure 5. Simplified illustration of the chirped pulse amplification process.

Pulse Stretcher

Positive dispersion : higher frequencies take more time to travel through Negative dispersion : higher frequencies take less time to travel through

 $dsin\theta_m = m\lambda$ d: spacing θ_m : diffracted angle m: m_{th} order λ : wavelength of incident light

Figure 6. simplified illustration ofagratingpulsestretcher(Copyright ©2018ShimadzuCorporation)

varying the separation distance between two grating

Stretching ratio

For a typical Ti: sapphire-based CPA:

□ Positive dispersion pulse stretcher (>90% broadband high-transmission efficiency ^[3])

□ Pulse stretched to several hundred picoseconds

[3] H. Kiriyama, et al, ISRN optics, Vol. 2012, Article IA. 120827, (2012), DOI: 10.5402/2012/120827

Amplifier

Broad gain bandwidth laser material:

 $\Box \text{ Nd: YAG } (Y_3\text{Al}_5\text{O}_{12})^{[4]}$

- widely used before 90s
- Pulse width 10 ~ 100 ps
- unstable due to high sensitivity to environmental perturbation

 \Box Ti: Sapphire (Al₂O₃) ^[4]

- Popular since 90s
- Broader gain bandwidth (wavelength from 700nm to 1100nm)
- High thermal conductivity
- High gain
- Produce pulse width ~ 20 fs

 \Box Yb-doped solid state materials (Yb: YLF(LiYF₄)^[5], Yb: YGAG (Y₃Ga₂Al₃O₁₂)^[6], Yb: YAG^{[7]-[8]})

- Investigated in the last decade
- broad absorption and emission bandwidth
- low quantum defect
- simple electronic structures
- suitable for direct diode pumping^[5]

[4] Sterling Backus, et al, "high power ultrafast lasers", *Review of Scientific Instruments* 69, 1207 (1998); DOI: 10.1063/1.1148795
[5] T. Harimoto, et al, *Optics Express*, Vol. 15, Issue 8, pp 5018 – 5023, (2007), DOI: 10.1364/OE.15.005018
[6]Jaroslav Huynh, et al, *Optical Materials Express*, Vol. 8, Issue 3, pp. 615-621, DOI: 10.1364/OME.8.000615
[7]Yoshihiro Ochi, et al, *Optics Express*, Vol 23, Issue 11, pp. 15057 – 15062, (2015), DOI: 10.1364/OE.23.015057
[8]Sandro Klingebiel, et al, *Optics Express*, Vol 19, Issue 6, pp. 5357 – 5363, (2011), DOI: 10.1364/OE.19.005357

Pulse Compressor

Figure7.simplifiedillustration of a gratingpulsecompressor(Copyright©2018Shimadzu Corporation)

For a typical Ti: sapphire-based CPA:

□ Negative dispersion pulse compressor (cancel out the dispersion by stretcher, $50\% \sim 70\%$ efficiency)

 \Box Pulse compressed to ~ 100 femtoseconds

Ti-sapphire CPA laser in 180 IATL

Figure 8. Schematic diagram of the Ti:sapphire CPA system. M: mirror, L: lens, P: thin-film polarizer, I: iris, GP: Glan polarizer, FR: Faraday rotator, BS: beam splitter, X: Ti:sapphire crystal

High power amplified Ti:Sapphire (780 nm) can be used to drive nonlinear crystals to extend the lasing wavelength to 1-18 μm

$$P = \varepsilon_0 \chi^{(1)} E(t) + \varepsilon_0 \chi^{(2)} E(t)^2 + \varepsilon_0 \chi^{(3)} E(t)^3 + \dots$$

Ultrafast pump-probe spectroscopy

Can also temporally or spectroscopically resolve probe Used to study carrier dynamics in materials ...

InAs/InAsSb core shell nanowires

