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Some motivations for mid-infrared LED development . . .

Low cost gas sensing Thermal scene generation
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Cascaded mid-infrared superlattice LEDs (SLEDSs)
have flexible emission and electrical characteristics
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Growth on SI motivated In part by low efficiency
and high heat generation in SLEDs

Low Efficiency Thermal rollover
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Why Si substrates instead of GaSb?
» Better thermal conductivity (4x)

* Less absorbing (10x)

* Less brittle(2x Young’s modulus)

* Potentially less expensive



Challenges of growth of IlI-V’s on Si
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Approach to growth of Il1l-V semiconductors on Si

s*Anatomy of a growth

4 I.

s*Heterovalency
e Use miscut substrate— simulates

homovalent template

s Lattice Mismatch
* Migration enhanced epitaxy

* Dislocation filter
* Thick recovery layer

Regular substrate

Miscut su bstra7te




Low material quality is evidenced by low photoluminescence
from InAs/GaSb superlattice on Si vs. GaSb substrates
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However, bottleneck in quantum efficiency in narrow gap materials
IS typically Auger and not Shockley-Read-Hall scattering

Quantum Efficiency = photons produced / electron-hole pair injected

radiative rate
radiative +SRH+Auger rate
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Mid-infrared SLED on Si versus mid-ir SLED on GaShbh —

heating versus

material quality
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Mid-infrared SLED on Si versus mid-ir SLED on GaSb —
recap

¢ Why grow Si substrates?
* Less brittle and potentially cheaper
* Better thermal and optical properties

** What holds growth on Si back?

* Thick buffer layers required
* Lower material quality
e Defects cause failure at high current densities

* Preliminary result

* At high injection, improvements from Si thermal conductivity and Auger
bottleneck outweigh reduced material quality



Dislocation-free growth of InAs nanowires on (111) Si

** Why study nanowires on Si substrates?

e Accommodation of strain without misfit dislocation

e Growth can be 5x-10x faster

 Easier to extract light due to lower effective index (e.g. ~ 1.25 vs 3.5)

**Some challenges and questions -
I \‘\.._.....35(;
* Wurzite (instead of zincblende) crystal has unexplored bandstructure * T
; '._Ev
* High surface-to-volume ratio believed to cause short carrier lifetime —?— Surface defect
$ /’ states

* Interior carrier lifetime unknown (crystal defects such as polytypism, i
twinning, stacking faults observed) [

ates

* Is a “buffer layer” needed? g
dislocations and impurities
at NW base




The first study was on InAs nanowires on (111) Si grown
by selective area epitaxy (MBE)
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Properties of both InAs nanowires, and InAs/INAIAS
core shell nanowires were studied
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Goal was to measure
the material
recombination
coefficients

InAs nanowires InAs/InAlAs core shell nanowires
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Carrier dynamics were characterized by pump-probe

differential transmission
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Use AT/T vs delay and response curve to obtain
R(AN) versus carrier density
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Use ABC analysis to obtain Shockley-Read-Hall and
Auger coefficients

Fit experimental curve with:

R(AN) = Aspy + Brgan + CAuge‘rn2

withn = AN + nb

to obtain Aggy and Cp e




B,.4 obtained independently through quantum

efficiency measurements
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Quantum Efficiency (%)

Auger coefficient was found to be ~10x smaller than
zincblende planar materials; low temp EQE is very high
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The second study was on InAs/InAlAs nanowires on
(111) Si grown by self nucleation (MBE)

* Pinholes in porous SiOx layer
used instead of etched, patterned
holes

* Sisubstrates were simply etched
in 2% hydrofluoric (HF) acid and
pretreated with 30% hydrogen
peroxide (H,0,) for oxide
regrowth

K. Zhang, X. Li, W. Dai, F. Toor, J.P. Prineas, Nano Lett., http://dx.doi.org/10.1021/acs.nanolett.9b00517.
(2019)



http://dx.doi.org/10.1021/acs.nanolett.9b00517

Recombination rates at the surface, interior, and ends of the
nanowire were resolved from geometric dependencies

« Nanowire length varied by changing the growth time (1.2 to 2.5 um)

« Nanowire diameter varied (40 nm to 129 nm) by:
= changing the thickness of the regrown SiO, on Si (111).
= changing both the true V/IlI ratio and growth time

« The surface recombination velocity S, and interior recombination
rate R;,torior €Xtracted by studying the geometrical dependence:

1 45
— 7 + Rinterior

TyMmc



The nanowire minority carrier lifetime was independent
of nanowire length
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Result suggests no “buffer”
segment or pedestal needed to
protect against:

* substrate contamination
* substrate-NW interfacial misfits



Surface and interior recombination rates were

separated and compared
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InAs/INAIAs core shell nanowires — key findings

e Selective area grown, wurzite NWs show 10x lower Auger scattering rates
than comparable planar zincblende materials, and high EQE at low
temperatures, suggesting potential as a low cost, mid-infrared emitter

e Self-nucleated NWs show thick “buffer layers” not needed to avoid material
degradation for growth on Si

e Self-nucleated NWs show interior recombination rate rather than surface
recombination limits NW carrier lifetime for most diameters at room
temperature, contrary to expectation



