Nanowire and Superlattice Mid-**Infrared Emitters on Si**

Prof. John Prineas

Students:

Xinxin Li **Kailing Zhang Aaron Muhowski** Departments of Physics and Astronomy, and Electrical and Computer Engineering

Iowa CREATES

University of Iowa

IEEE Summer Topicals, Ft. Lauderdale, FL

July 9, 2019

Collaborator:

Prof. Fatima Toor

Sponsor acknowledgements:

- NSF for nanowire research under EPMD-1608714
- Air Force Research Labs Munitions Directorate under contract FA8651-16-P-0241 for superlattices on Si research

Some motivations for mid-infrared LED development . . .

Low cost gas sensing

Chemical sensing in aqueous

Thermal scene generation

Acknowledgement of partners Chip Design Systems and Teledyne Scientific

Type II superlattices and alloy group III-Vs widely tunable over the mid and long-wave infrared

InAs/GaSb 3-30 μm
GaInAsSb 1.7-4.9 μm

SWIR: 1-3 μm MWIR: 3-5 μm LWIR: 8-12 μm

Group III-V semiconductor materials

Cascaded mid-infrared superlattice LEDs (SLEDs) have flexible emission and electrical characteristics

Cascading for lower current, higher voltage operation

E. Koerperick etal, J.P. Prineas, *IEEE J Quant Electron* **44**, 1242 (2008)

R. Ricker etal, J. P. Prineas IEEE J. Quantum Electron. **51**, 3200406 (2015) R. Ricker etal, J.P. Prineas J. Appl. Phys. **121**, 185701 (2017)

Growth on Si motivated in part by low efficiency and high heat generation in SLEDs

Low Efficiency

Why Si substrates instead of GaSb?

- Better thermal conductivity (4x)
- Less absorbing (10x)
- Less brittle(2x Young's modulus)
- Potentially less expensive

Challenges of growth of III-V's on Si

Forming a new layer

• Si: 11%

-0.6%

7%

AlSb:

• GaAs:

Approach to growth of III-V semiconductors on Si

Anatomy of a growth

Growth

Layers of interest

Buffer layers

Dislocation filter

Migration enhanced
epitaxy

Heterovalency

Use miscut substrate
 simulates

 homovalent template

Lattice Mismatch

- Migration enhanced epitaxy
- Dislocation filter
- Thick recovery layer

Regular substrate

Miscut substrate

Low material quality is evidenced by low photoluminescence from InAs/GaSb superlattice on Si vs. GaSb substrates

However, bottleneck in quantum efficiency in narrow gap materials is typically Auger and not Shockley-Read-Hall scattering

Quantum Efficiency ≡ photons produced / electron-hole pair injected

$$= \frac{radiative \ rate}{radiative + SRH + Auger \ rate}$$
$$= \frac{B_{rad}n}{A_{SRH} + B_{rad}n + C_{Auger}n^2}$$

Mid-infrared SLED on Si versus mid-ir SLED on GaSb – heating versus material quality

A.J. Muhowski etal., J.P. Prineas J. Cryst. Growth 507, 46 (2018)

Mid-infrared SLED on Si versus mid-ir SLED on GaSb – recap

Why grow Si substrates?

- Less brittle and potentially cheaper
- Better thermal and optical properties

What holds growth on Si back?

- Thick buffer layers required
- Lower material quality
- Defects cause failure at high current densities

Preliminary result

 At high injection, improvements from Si thermal conductivity and Auger bottleneck outweigh reduced material quality

Dislocation-free growth of InAs nanowires on (111) Si

Why study nanowires on Si substrates?

- Accommodation of strain without misfit dislocation
- Growth can be 5x-10x faster
- Easier to extract light due to lower effective index (e.g. ~ 1.25 vs 3.5)

Some challenges and questions

- Wurzite (instead of zincblende) crystal has unexplored bandstructure
- High surface-to-volume ratio believed to cause short carrier lifetime
- Interior carrier lifetime unknown (crystal defects such as polytypism, twinning, stacking faults observed)
- Is a "buffer layer" needed?

The first study was on InAs nanowires on (111) Si grown by selective area epitaxy (MBE)

Properties of both InAs nanowires, and InAs/InAlAs core shell nanowires were studied

Goal was to measure the material recombination coefficients

InAs nanowires

InAs/InAlAs core shell nanowires

Carrier dynamics were characterized by pump-probe differential transmission

Above bandgap pump generates excess carrier density ΔN

Differential transmission $\Delta T/T$ of below gap probe which detects free carriers

Measure ΔT/T vs. pump-probe delay

Use $\Delta T/T$ vs delay and response curve to obtain R(ΔN) versus carrier density

$$R(\Delta N) \equiv \frac{-1}{\Delta N} \frac{\partial \Delta N}{\partial t} = \frac{-1}{\Delta N} \quad \mathbf{x} \quad \frac{\partial (\Delta T/T)}{\partial t} \quad \mathbf{x} \quad \frac{\partial \Delta N}{\partial (\Delta T/T)}$$

Use ABC analysis to obtain Shockley-Read-Hall and Auger coefficients

Fit experimental curve with:

$$R(\Delta N) = A_{SRH} + B_{rad} n + C_{Auger} n^{2}$$
with $n = \Delta N + nb$

to obtain A_{SRH} and C_{Auger}

$R(\Delta N)$

B_{rad} obtained independently through quantum efficiency measurements

$$IQE = \frac{B_{rad}\Delta N}{R(\Delta N)}$$

Emission wavelength found to be 2.7 µm

Auger coefficient was found to be ~10x smaller than zincblende planar materials; low temp EQE is very high

Coefficient	77K	Room temp
A _{SRH} (s ⁻¹)	(1.38±0.15)× 10 ⁹	$(6.78 \pm 0.18) \times 10^9$
B _{rad} (cm ³ /s)	$(6.80 \pm 0.04) \times 10^{-10}$	$(1.42 \pm 0.16) \times 10^{-11}$
C _{auger} (cm ⁶ /s)	$1.26 \pm 0.15 \times 10^{-27}$	$8.23 \pm 0.44 \times 10^{-28}$

The second study was on InAs/InAlAs nanowires on (111) Si grown by self nucleation (MBE)

- Pinholes in porous SiOx layer used instead of etched, patterned holes
- Si substrates were simply etched in 2% hydrofluoric (HF) acid and pretreated with 30% hydrogen peroxide (H₂O₂) for oxide regrowth

Recombination rates at the surface, interior, and ends of the nanowire were resolved from geometric dependencies

- Nanowire length varied by changing the growth time (1.2 to 2.5 μm)
- Nanowire diameter varied (40 nm to 129 nm) by:
 - changing the thickness of the regrown SiO₂ on Si (111)¹
 - changing both the true V/III ratio and growth time
- The surface recombination velocity S, and interior recombination rate $R_{interior}$ extracted by studying the geometrical dependence:

$$\frac{1}{\tau_{MC}} = \frac{4S}{d} + R_{interior}$$

The nanowire minority carrier lifetime was independent of nanowire length

Result suggests no "buffer" segment or pedestal needed to protect against:

- substrate contamination
- substrate-NW interfacial misfits

Surface and interior recombination rates were separated and compared

	77 K	185 K	293 K
$S(cm \cdot s^{-1})$	5388 ± 1596	8615 ± 2500	8250 ± 5145
$R_{interior}$ (ns ⁻¹)	1.79 ± 0.76	2.35 ± 1.27	11.2 ± 3.1

- Surface recombination velocities comparable to planar InAs / air
- The surface and interior recombination rates equal for d = 70.1 nm, 17.1 nm at 77 K, 293 K, respectively

InAs/InAlAs core shell nanowires – key findings

- Selective area grown, wurzite NWs show 10x lower Auger scattering rates than comparable planar zincblende materials, and high EQE at low temperatures, suggesting potential as a low cost, mid-infrared emitter
- Self-nucleated NWs show thick "buffer layers" not needed to avoid material degradation for growth on Si
- Self-nucleated NWs show interior recombination rate rather than surface recombination limits NW carrier lifetime for most diameters at room temperature, contrary to expectation