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Some motivations for mid-infrared LED development . . .

Low cost gas sensing

Chemical sensing 
in aqueous

Thermal scene generation

Glucose
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LWIR: 8-12 m
MWIR: 3-5 m
SWIR: 1-3 m

InAs/GaSb 3-30 m

GaInAsSb 1.7-4.9 m

Bulk c-bands

Bulk v-bands
Superlattice c-band
Superlattice v-band

InAs GaSb

E

z

STM cross section 
of InAs/GaSb1

1Steinshnider etal, Phys Rev Lett 85, 2953 (2000)

Type II superlattices and alloy group III-Vs widely 
tunable over the mid and long-wave infrared

Group III-V semiconductor materials
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120x120 m2 mesa

N=1

N=4

N=8

N=16

T=77K

E. Koerperick etal, J.P. Prineas,  IEEE J Quant Electron 

44, 1242 (2008)

Cascaded mid-infrared superlattice LEDs (SLEDs) 
have flexible emission and electrical characteristics

Cascading for lower current, 
higher voltage operation Independent two-color 

emitters

Broadband emission

R. Ricker etal, J. P. Prineas IEEE J. Quantum Electron. 51, 3200406 (2015)

R. Ricker etal, J.P. Prineas J. Appl. Phys. 121, 185701 (2017)
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Growth on Si motivated in part by low efficiency 
and high heat generation in SLEDs

hwallplug = hextraction hinternal quantum efficiencyhohmic hquantum defect

0.25%       ~   2-3% x 20% x 70% x     70%

Why Si substrates instead of GaSb?

• Better thermal conductivity (4x)
• Less absorbing (10x)
• Less brittle(2x Young’s modulus)
• Potentially less expensive

Low Efficiency
Thermal rollover



Challenges of growth of III-V’s on Si

Relaxed Pseudomorphic

Su
b

st
ra

te
Ep

ila
ye

r

Mismatch to GaSb:

• GaSb: 0%

• InAs: 0.6%

• AlSb: -0.6%

• GaAs: 7%

• Si: 11%

High strain Heterovalency
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Forming a new layer

Homovalent
epitaxy

Heterovalent
epitaxy



❖Anatomy of a growth

❖Heterovalency
• Use miscut substrate– simulates 

homovalent template

❖Lattice Mismatch
• Migration enhanced epitaxy

• Dislocation filter

• Thick recovery layer

Substrate

Buffer layers

Layers of interest

Growth

Migration enhanced 
epitaxy

Dislocation filter

Thick recovery layer 

Regular substrate Miscut substrate

Approach to growth of III-V semiconductors on Si
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Si substrate

Buffer layers

PL structure

Growth

Low material quality is evidenced by low photoluminescence 

from InAs/GaSb superlattice on Si vs. GaSb substrates
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Quantum Efficiency ≡ photons produced / electron-hole pair injected

= 
𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒

𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑣𝑒 +𝑆𝑅𝐻+𝐴𝑢𝑔𝑒𝑟 𝑟𝑎𝑡𝑒

=
𝐵𝑟𝑎𝑑𝑛

𝐴𝑆𝑅𝐻 + 𝐵𝑟𝑎𝑑𝑛 + 𝐶𝐴𝑢𝑔𝑒𝑟𝑛
2

Radiative rate =BradnShockley Read Hall 
(SRH) rate =  ASRH

Auger rate =CAugern
2

E Defect 
level

However, bottleneck in quantum efficiency in narrow gap materials 

is typically Auger and not Shockley-Read-Hall scattering
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Si is way worse? Si is way better!

Si is a little better.

Mid-infrared SLED on Si versus mid-ir SLED on GaSb –

heating versus material quality

A.J. Muhowski etal., J.P. PrineasJ. Cryst. Growth 507, 46 (2018)
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❖ Why grow Si substrates? 
• Less brittle and potentially cheaper

• Better thermal and optical properties

❖ What holds growth on Si back?
• Thick buffer layers required

• Lower material quality

• Defects cause failure at high current densities

❖ Preliminary result
• At high injection, improvements from Si thermal conductivity and Auger 

bottleneck outweigh reduced material quality 

Mid-infrared SLED on Si versus mid-ir SLED on GaSb –

recap
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Dislocation-free growth of InAs nanowires on (111) Si

❖ Why study nanowires on Si substrates? 

• Accommodation of strain without misfit dislocation

• Growth can be 5x-10x faster

• Easier to extract light due to lower effective index (e.g. ~ 1.25 vs 3.5)

❖Some challenges and questions

• Wurzite (instead of zincblende) crystal has unexplored bandstructure

• High surface-to-volume ratio believed to cause short carrier lifetime

• Interior carrier lifetime unknown (crystal defects such as polytypism, 
twinning, stacking faults observed)

• Is a “buffer layer” needed?
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The first study was on InAs nanowires on (111) Si grown 
by selective area epitaxy (MBE)

X. Li etal., J.P. Prineas Nano Lett. 19, 990-96 (2019)
13



Properties of both InAs nanowires, and InAs/InAlAs
core shell nanowires were studied

InAs nanowires InAs/InAlAs core shell nanowires

Goal was to measure 
the material 
recombination 
coefficients

14Acknowledgement of collaborator Prof. Gregor Koblmueller, Julian Treu, and Lukas Stampfer
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Probe FWHM 
~150fs

MCT 
Detector

InAs
NWs

Pump FWHM 
~150fsValence band

Conduction  
band

Eg

Carrier dynamics were characterized by pump-probe 
differential transmission

Epump > Eg

Eprobe < Eg

Measure ΔT/T vs. pump-probe delay

Above bandgap pump generates 
excess carrier density ΔN

Differential transmission ΔT/T of below 
gap probe which detects free carriers
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Use DT/T vs delay and response curve to obtain 
R(DN) versus carrier density

𝑅 ∆𝑁 ≡
−1

∆𝑁

𝜕∆𝑁

𝜕𝑡
=

−1

∆𝑁

𝜕∆𝑁

𝜕(∆𝑇/𝑇)

𝜕(∆𝑇/𝑇)

𝜕𝑡
x x
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Use ABC analysis to obtain Shockley-Read-Hall and 
Auger coefficients

𝑅 ∆𝑁 = 𝐴𝑆𝑅𝐻 + 𝐵𝑟𝑎𝑑 𝑛 + 𝐶𝐴𝑢𝑔𝑒𝑟𝑛
2

𝑅 ∆𝑁

Fit experimental curve with:

to obtain ASRH and CAuger

with 𝑛 = ∆𝑁 + 𝑛𝑏



λ~ 830nm

Core-shell NWs

InSb
detector

1650nm LP filter

iris

Brad obtained independently through quantum 
efficiency measurements

𝐼𝑄𝐸 =
𝐵𝑟𝑎𝑑∆𝑁

𝑅(∆𝑁)
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Emission wavelength found to 

be  2.7 µm



Coefficient 77K Room temp

ASRH  (s
-1) (1.38±0.15)× 109 (6.78 ± 0.18) × 109

Brad (cm3/s) (6.80 ± 0.04) × 10-10 (1.42 ± 0.16) × 10-11

Cauger (cm6/s) 1.26 ± 0.15 × 10−27 8.23 ± 0.44 × 10−28

Auger coefficient was found to be ~10x smaller than 
zincblende planar materials; low temp EQE is very high
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The second study was on InAs/InAlAs nanowires on 
(111) Si grown by self nucleation (MBE)

• Pinholes in porous SiOx layer 
used instead of etched, patterned 
holes

• Si substrates were simply etched 
in 2% hydrofluoric (HF) acid and 
pretreated with 30% hydrogen 
peroxide (H2O2) for oxide 
regrowth

K. Zhang, X. Li, W. Dai, F. Toor, J.P. Prineas, Nano Lett., http://dx.doi.org/10.1021/acs.nanolett.9b00517. 

(2019) 20

http://dx.doi.org/10.1021/acs.nanolett.9b00517


Recombination rates at the surface, interior, and ends of the 
nanowire were resolved from geometric dependencies

1

𝜏𝑀𝐶
=
4𝑆

𝑑
+ 𝑅𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟

• Nanowire length varied by changing the growth time (1.2 to 2.5 µm)

• Nanowire diameter varied (40 nm to 129 nm) by:

▪ changing the thickness of the regrown SiO2 on Si (111),

▪ changing both the true V/III ratio and growth time

• The surface recombination velocity S, and interior recombination 

rate 𝑅𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 extracted by studying the geometrical dependence:
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The nanowire minority carrier lifetime was independent 
of nanowire length

Result suggests no “buffer” 

segment or pedestal needed to 

protect against:

• substrate contamination

• substrate-NW interfacial misfits

22



77 K 185 K 293 K

𝑆( 𝑐𝑚 ∙ 𝑠−1) 5388 ± 1596 8615 ± 2500 8250 ± 5145

𝑅𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 (𝑛𝑠−1) 1.79 ± 0.76 2.35 ± 1.27 11.2 ± 3.1

Surface and interior recombination rates were 
separated and compared

• Surface recombination velocities comparable 

to planar InAs / air 

• The surface and interior recombination rates 

equal for d = 70.1 nm, 17.1 nm at 77 K, 293 K, 

respectively
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InAs/InAlAs core shell nanowires – key findings

• Selective area grown, wurzite NWs show 10x lower Auger scattering rates 
than comparable planar zincblende materials, and high EQE at low 
temperatures, suggesting potential as a low cost, mid-infrared emitter

• Self-nucleated NWs show thick “buffer layers” not needed to avoid material 
degradation for growth on Si

• Self-nucleated NWs show interior recombination rate rather than surface 
recombination limits NW carrier lifetime for most diameters at room 
temperature, contrary to expectation

24


